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ABSTRACT

The state of the art in music source separation employs neural net-
works trained in a supervised fashion on multi-track databases to
estimate the sources from a given mixture. With only few datasets
available, often extensive data augmentation is used to combat over-
fitting. Mixing random tracks, however, can even reduce separation
performance as instruments in real music are strongly correlated. The
key concept in our approach is that source estimates of an optimal
separator should be indistinguishable from real source signals. Based
on this idea, we drive the separator towards outputs deemed as re-
alistic by discriminator networks that are trained to tell apart real
from separator samples. This way, we can also use unpaired source
and mixture recordings without the drawbacks of creating unrealistic
music mixtures. Our framework is widely applicable as it does not
assume a specific network architecture or number of sources. To our
knowledge, this is the first adoption of adversarial training for music
source separation. In a prototype experiment for singing voice separa-
tion, separation performance increases with our approach compared
to purely supervised training.

Index Terms— Source separation, Deep neural networks, Ad-
versarial training, Semi-supervised learning

1. INTRODUCTION

Separating instruments from music recordings is challenging as the
individual sources are highly correlated in both time and frequency.
To approach such a setting, most current methods train deep networks
trained in a supervised manner to directly approximate the poste-
rior distribution over sources for a given mixture input. Since the
source estimate is compared to the target for each input, as shown
in Figure 1(a), this requires paired input-output samples from multi-
track recordings – unfortunately, publicly available datasets are rather
small, which limits the overall performance. As a result, data aug-
mentation (and other regularisation techniques) are used to combat
overfitting [1, 2]. However, some of the assumptions made are un-
realistic: for example, randomly mixing sources implicitly assumes
that sources in a music recording are independent – the reason that
music separation is so difficult, however, is exactly due to correla-
tion between instruments. As a result, performance can be limited
since source correlations in the test set cannot be learned from the
augmented training data.

With a generative approach, however, we can instead model a
prior over the sources and how they interact to produce a mixture, the
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(a) Standard supervised training

(b) Proposed adversarial training

Fig. 1. Our proposed system, shown for the example of singing voice
separation. In addition to a supervised loss (a), we add an unsu-
pervised loss that drives the separator to produce a more believable
output distribution for each source, as assessed by discriminators that
try to distinguish real from separator samples.

former of which can be learned from solo source recordings. Sep-
aration is then an inference problem amounting to finding source
estimates that explain a given mixture under the generative model.
Since modeling source priors and performing posterior inference is
computationally intensive, models often have to be heavily simpli-
fied [3], again limiting their performance.

In this paper, we therefore develop a novel unsupervised objective
shown in Figure 1(b) that makes use of the large amount of available
unlabelled music tracks as well as datasets of solo source instrument
recordings, and combine it with supervised training. This way, we
can benefit from the numerical behaviour and training stability of
supervised methods while also capturing the variability and richness
found in large amounts of unlabelled data. In particular, one dis-
criminator network per source is continually trained to distinguish
separator estimates made on the unlabelled music from real samples
taken from the respective source dataset. The separator aims to output
more realistic sources as judged by the discriminators, in addition to
minimising the supervised loss on multi-track data.
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Overall, we make the following contributions:
• Our theoretical framework for semi-supervised source separa-

tion can harness all available source and mixture data;
• The framework can be used with any neural network architec-

ture and type of audio representation;
• Adversarially enforced source priors enable training larger

models with better performance despite limited multi-track
data, without regularisation such as data augmentation;

• In a prototype experiment, we show performance improve-
ments in singing voice separation over a baseline model.

2. RELATED WORK

2.1. Generative approaches

A Bayesian perspective is well suited for source separation if ex-
tensive prior knowledge about the sources is available, as it can be
explicitly integrated into the model. However, early approaches [3, 4]
often have to make many simplifying assumptions about the data
generation process to constrain the generative model such that the
difficult problem of posterior inference is tractable. A more recent
framework provides various entry points to incorporate available prior
knowledge into source models [5]. However, the resulting complex
models do not always scale to large data due to the use of computa-
tionally intensive inference algorithms.

For modeling singing voice, a commonly made assumption is a
sparse representation in the magnitude spectrogram, while the accom-
paniment is of low rank and changes more slowly [6, 7, 8]. However,
as indicated by recent evaluation campaigns [9], modelling more nu-
anced relationships (using deep networks) might be beneficial since
this assumption only holds to an extent.

Non-negative matrix factorisation (NMF) is often used for separa-
tion, and can elegantly incorporate prior knowledge about sources by
adapting spectral templates [10]. However, NMF is limited in expres-
sivity due to the assumption that spectral content can be factorised
independently of time [11], and many spectral bases are needed to
represent complex instruments.

Overall, current generative models are subject to various con-
straints in their structure, sacrificing separation performance to keep
inference tractable, or require expert knowledge to set priors. In
contrast, we use deep networks to enforce source priors since they
make minimal assumptions about the source properties and instead
acquire them from data.

2.2. Direct posterior approximation

Many deep neural networks have been trained to directly predict
sources from mixture input, from feed-forward [12] to convolu-
tional [13, 2] and recurrent neural networks [14, 15, 1]. The loss
involves comparing the prediction and the correct output for each
input, restricting the approach to input-output pairs from multi-track
datasets. Although these deep architectures perform well, it is not
directly possible to improve them by also learning from individual
source recordings, since the prior is not explicitly modelled.

Furthermore, extensive data augmentation is required [1, 2] to
combat overfitting due to the limited number of multi-track recordings.
Randomly mixing source excerpts to generate mixtures is common,
but assumes that sources are temporally independent. Since this is
not the case in music pieces, correlations between sources can not be
exploited by the separator. Our unsupervised loss does not introduce
such a bias since it only enforces the overall separator output to match
the real source distribution for each source separately.

3. PROPOSED FRAMEWORK

Our goal is to separate a mixturem intoK sources s = (s1, . . . , sK)T .
Here, each such sample is as an excerpt from a magnitude spectro-
gram – our framework, however, is easily adapted to other input
representations such as waveforms. Overall, we assume a multi-track
dataset Dm = {(s1,m1), . . . (sM ,mM )} with M input-output
samples is available. Furthermore we have access to U unlabelled
mixture samples Du = {mu

1, . . . ,m
u
U} and a collection Dks of solo

recordings for each source k. Let p(s,m) be the true probability of
any source-mixture pair. We assume Dm is sampled from p, Du from
the marginal pm(m) =

∫
s
p(s,m), and Dks from the marginal of the

k-th source pks (sk) =
∫
{s1,...,sK ,m}\{sk} p(s,m).

We aim to train a deterministic separation function fφ parametrised
by a deep neural network with all available data so that qφ(s|m) =
δ(fφ(m) − s) approximates the real posterior p(s|m). Current
approaches usually use the mean squared error between estimates
and targets for each input

Ls =
1

M

M∑
i=1

||fφ(mi)− si||2 (1)

as a loss function on multi-track data. However, this loss function
does not include the unlabelled data and is minimised when predicting
the posterior mean, which is an unlikely estimate itself and often
corresponds to a blurred average of real posterior modes.

We derive an unsupervised loss without these issues. An optimal
separator qφ would estimate the real posterior perfectly and thus fulfil
qφ(s|m) = p(s|m) for all possible m. In this case, it follows that
the marginal separator output outqφ(s) = Em∼pm qφ(s|m) would be
equal to the true source marginal ps(s) = Em∼pm p(s|m). If the
joint distributions outqφ and ps are the same, then so are their source
marginals – with outqkφ(s

k) =
∫
{s1,...,sK}\{sk}

outqφ(s), this means

outqkφ = pks , ∀ k = 1, . . . ,K. (2)

The above distribution equalities are thus necessary, but not sufficient
conditions for an optimal separator.

To approximately fulfil the equalities in (2), we can define a
divergenceD[outqkφ||pks ] withD[q||p] ≥ 0 andD[q||p] = 0⇔ q = p
between the two distributions for each source k to formulate an
unsupervised loss we aim to minimise

Lu =

K∑
k=1

D[outqkφ||pks ]. (3)

This loss allows using our unlabelled data since we compare K pairs
of source distributions instead of individual samples. We approximate
pks and outqkφ using batches of samples from the source dataset Dks
and the unlabelled mixture dataset Du, respectively.

3.1. Measurement and choice of divergence

To determine Lu, we need to choose a divergence D and a method to
re-estimate it after each separator training step since outqφ changes.
One possibility is to choose the Jenson-Shannon (JS) or Kullback-
Leibler (KL) divergence as D and use a discriminator network Dθk
for each source k that distinguishes separator from real samples
to estimate each divergence – note that this is a non-trivial result,
see [16] for details. With this choice, our unsupervised loss is similar
to generative adversarial networks (GANs) [16], but we use one
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discriminator for each source instead of only one, and our “generator”
qφ receives mixtures as input instead of random noise.

GANs are known to be unstable [17] since KL and JS divergences
are maximised for pairs of distributions that do not overlap, which
likely happens in our setting since we use finite sets of samples for
outqkφ and pks so they become dirac-like. As a result, the gradients
for the separator can vanish, or become arbitrarily large near the
discriminator’s decision boundary, which can destabilise training.

For a stable optimisation, we consider more well-behaved diver-
gences such as the Wasserstein distance WP . As discussed in [18],
the gradient ofWP with respect to the separator output has a bounded
norm since a regularising term Lgrad is applied on the discriminator
networks. Thus we expect separator training to be more stable since
the gradient applied to its output does not vanish or explode.

Following the improved Wasserstein GAN algorithm [18], we
use one discriminator network Dθk for each source k to approximate
WP [

outqkφ||pks ]. We modify the gradient penalty for the discriminator
to be one-sided since it enabled faster convergence in our experiments:

Lgrad = Ex∼p̂max(||∇xDθk (x)||2 − 1, 0)2 (4)

Sampling from p̂ involves randomly interpolating between pairs of
points sampled from the data and the generator distribution. We use
the Wasserstein distance for all following experiments due to instabil-
ities we observed in initial tests using the KL and JS divergences.

3.2. Additive penalty

For all unlabelled mixtures mu
i , we also aim to ensure that source

estimates add up to the mixture, so that
∑K
k=1 fφ(m

u
i)k ≈ mu

i . If we
know this additive property holds exactly in the true distribution p,
and qφ is constrained to only output estimates satisfying this con-
straint, no additional loss is needed. When using spectrograms, this
relationship is only approximate due to phase interference, so we do
not constrain the network output fφ(m) while minimising the loss

Ladd =
1

U

U∑
i=1

||
K∑
k=1

fφ(m
u
i)k −mu

i ||2 (5)

which is equivalent to maximising
∑U
i=1 log p(m

u
i |fθ(mu

i)) as
likelihood term when assuming p(m|s) is an isotropic Gaussian
N (m|

∑K
k=1 sk;σ

2I). Since we are considering aggregate priors
with Lu and a likelihood term p(m|s) with Ladd, our overall unsuper-
vised training exhibits similarities to variational inference with qφ
as inference network that aims to approximate the posterior of the
generative model p(s,m) = p(m|s)

∏K
k=1 p

k
s (s

k).

3.3. Semi-supervised loss

Overall, we minimise the total separator loss L = Ls +αLu + βLadd

by stochastic gradient descent using a batch of multi-track samples
from Dm and a batch of unlabelled mixtures from Du. After each
separator update, we take Ndisc gradient steps for each discriminator
Dθk to estimate the divergenceWP [

outqkφ||pks ] using one shared batch
of unlabelled mixtures to generate source estimates and one batch
from the respective source dataset Dks . The scalars α and β are
weights for the loss terms and constitute hyper-parameters.

4. SINGING VOICE SEPARATION EXPERIMENT

4.1. Initial considerations

Since the accompaniment in singing voice separation has a very com-
plex distribution, it is harder for the discriminator to estimate the

divergence D than it is for the singing voice. Therefore, we con-
ducted one experiment without the accompaniment discriminator.
Note that after removing a divergence term from Lu it still represents
a necessary, albeit weaker, condition for an optimal separator, thus
retaining the global minima of the original loss Lu. In practice how-
ever, we may not find a global minimum, which could bias solutions
towards favouring vocal over accompaniment quality.

4.2. Datasets

We use the training partition of the DSD100 [9] database as our su-
pervised training setDm. We split the multi-track databases iKala [7],
MedleyDB [19] and CCMixter [20] into thirds, and use one third of
tracks from each database to form the unlabelled dataset Du and the
source datasets Dks needed for semi-supervised training. Our valida-
tion and test set is each built by taking another third of tracks from
iKala, MedleyDB, and CCMixter, in addition to 25 tracks from the
test partition of DSD100. The supervised and unsupervised sets have
a different sampling bias to enable testing the regularization effect
of our semi-supervised approach more directly. We use multi-track
data for the unsupervised set despite their known pairing to eliminate
dataset bias as a confounding factor, ensuring differences between the
separator output outqφ and the source dataset distributions stem from
the separator. Large databases such as DAMP [21] could be used as
unsupervised data assuming they are sufficiently similar to multi-track
stems – however, we only aimed to provide a first proof-of-concept
in this paper and thus did not include such datasets.

4.3. Experimental setup

4.3.1. Preprocessing

The audio input is converted to mono and downsampled to 8 KHz
to reduce dimensionality, before the magnitude spectrogram is com-
puted from a 512-point FFT with 50% overlap, and normalized by
x→ log(1 + x). For the unsupervised dataset, we multiply the mag-
nitudes by a factor uniformly drawn from the interval [0.2, 1.2] to
induce invariance to loudness differences in the source discriminators.
We randomly draw 64 spectrogram excerpts for each batch.

4.3.2. Separator architecture

The separator architecture follows the U-Net [22, 23] closely and
uses 3× 3 convolutional filters. After a first convolutional layer with
16 filters, 4 downsampling layers perform max-pooling by a factor
of 2 followed by a convolution with twice as many filters as the last
layer. The 4 upsampling layers perform transposed convolution with
a stride of 2, crop and concatenate the feature map from the respective
downsampling layer before applying another transposed convolution.

The last feature map is concatenated with the mixture input
so it can be used as basis for the output, before K separate 1x1
convolutions are applied, one for each source. After applying ReLU
activations, the K feature maps form the K log-normalised source
estimates, which are directly input to the discriminators. To generate
the final source signals, we use an inverse STFT using the phase from
the mixture input. Since the U-Net requires additional context to
make predictions at the centre of its input, we use valid convolutions,
add temporal context to the input and zero-pad along the frequency
axis. We input 158 350-dimensional time frames to retrieve 66 256-
dimensional time frames as output.
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Test set DSD100 MedleyDB CCMixter iKala
Baseline V VA Baseline V VA Baseline V VA Baseline V VA Baseline V VA

SDR Inst. 8.09 8.89 8.55 11.11 10.75 10.76 9.40 9.60 9.65 10.65 11.09 10.89 6.34 7.71 7.13
SDR V. 6.80 7.28 7.47 3.74 3.17 3.54 2.48 2.43 3.00 3.25 3.52 3.70 9.50 10.47 10.52

SIR Inst. 12.03 12.58 12.67 14.46 13.56 13.86 12.18 12.07 12.74 15.99 15.49 16.08 10.42 11.79 11.57
SIR V. 13.72 14.00 14.45 10.03 9.92 10.49 9.40 9.21 9.48 8.39 8.94 9.35 16.98 17.44 17.90

SAR Inst. 11.27 12.05 11.40 14.20 14.60 14.10 13.94 14.23 13.45 12.84 13.69 13.24 9.43 10.42 9.70
SAR V. 8.54 9.00 9.04 5.50 4.84 5.12 4.71 4.69 5.20 6.43 6.17 6.17 10.81 11.83 11.73

Fig. 2. Mean test set performance comparison on the test set (22 instrumental tracks excluded, mono, 8 KHz sampling rate) and subsets using
the supervised baseline, using a vocal discriminator (V) and using both vocal and accompaniment discriminators (VA)

4.3.3. Discriminator architecture

The source discriminators receive log-normalised magnitude spectro-
grams and follow the DCGAN architecture [24] with Leaky ReLU
activations and 32 convolutions in the first layer, with zero-padding
in time and frequency. Since the input samples have more frequency
bins than time frames, we use two convolutional layers with 4 × 2
filters and 2× 1 stride after the first four layers to detect relationships
across frequency bands, before computing 32 dense activations and
finally a single linear output.

4.3.4. Training procedure

We train the separator and discriminators on an NVIDIA GTX1080
using the ADAM optimiser with a learning rate of 5 · 10−5. Training
is stopped if validation performance does not increase after more than
six epochs, with 1000 separator update steps in each epoch. Finally,
the model with the best validation loss is selected.

A baseline model is trained using only the supervised loss in the
log-normalised magnitude space. Then, we train a network with the
same architecture using our semi-supervised approach with α = 0.01,
but without accompaniment discriminator. Finally, we use both dis-
criminators and a lower α = 0.001. Each time, we set β = α.
We use low values for α since in initial tests the loss occasionally
plateaued during training, likely due to local minima in the unsuper-
vised loss. Discriminators are trained for Ndisc = 5 iterations per
separator update to re-estimate the respective Wasserstein distance.

4.4. Evaluation

4.4.1. Quantitative results

For evaluation, we calculate the track-wise (normalised) SDR, SIR,
and SAR metrics [25], with mono estimates and target signals sam-
pled at 8 KHz. Table 2 shows averages over the test set and its subsets
containing only tracks from a specific data source. On the full test set,
the purely supervised method (‘Baseline’) is consistently improved
upon across every metric by our method, both with and without an
accompaniment discriminator. The baseline method is only better on
the DSD100 subset, likely because the supervised set contains only
DSD100 training samples, which can be viewed as overfitting. On
all other datasets our method yields improvements, especially on the
iKala dataset, showing we can train the separator on these samples
despite not knowing their input-output pairings. Therefore our un-
supervised loss can be a surrogate for the supervised loss enabling
learning from unlabelled mixture and source datasets.

4.4.2. Qualitative analysis

For an intuition about the discriminator’s behaviour, Figure 3(a)
shows an exemplary vocal estimate from the separator during train-
ing, where white denotes high energy. Next to a strong singing voice
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Fig. 3. (a) A separator voice estimate x. (b) Gradients of the voice
discriminator output with respect to the input x. Only the lower
frequency range is shown.

with vibrato, accompaniment interference is visible as straight, hor-
izontal lines. The discriminator was successfully trained to output
large values for real and low values for separator samples: The gra-
dient with respect to the input is positive (shown in white) for vocal
parts and negative (shown in black) for the accompaniment artefacts.
Therefore the separator is encouraged to attenuate the accompaniment
and amplify the voice content to make the voice output more realistic.

5. CONCLUSION

We presented a semi-supervised framework for audio source sepa-
ration. In addition to supervised training on multi-track data, we
introduce an unsupervised loss on unlabelled mixtures driving the
separator to minimise a divergence between its output distribution
and the real source distribution, for each source. The divergence for
each source is estimated by its own discriminator continually trained
to distinguish real source samples from separator predictions. Our
framework is scalable since it can acquire complex source priors from
large amounts of unlabelled data while making only few assumptions
about the source characteristics.

For singing voice separation, we show an increase in performance
compared to purely supervised training. However, performance can
also be reduced if the unlabelled data is too scarce or does not come
from the same distribution as the test set. Therefore, we used multi-
track datasets as our unlabelled data in our initial experiment to avoid
this confounding factor, but datasets such as DAMP [21] could be
included if the dataset bias is slight or can be controlled.

Future work could involve applying our framework to multi-
instrument separation due to the highly structured priors for many
sources. Our semi-supervised approach also allows training larger
separator models that would not generalise sufficiently when trained
on multi-track data alone. Finally, discriminator architectures could
be adapted to better distinguish separator from real samples and to be
less sensitive to the inherent source variability.
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